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I. Introduction and Program Objective

Current methods of lifetime assessment leave much to be desired. Typically, the expected life of
a full-scale component exposed to a complex environment is based upon empirical interpretations
of measurements performed on microscopic samples in controlled laboratory conditions.
Extrapolation to the service component is accomplished by scaling laws which, if used at all, are
empirical; little or no attention is paid to synergistic interactions between the different components
of the real environment. With the increasingly hostile conditions which must be faced in modem
aerospace applications, improvement in lifetime estimation is mandated by both cost and safety
considerations.

This program aims at improving current methods of lifetime assessment by building in the
characteristics of the micro-mechanisms known to be responsible for damage and failure. The
broad approach entails the integration and, where necessary, augmentation of the micro-scale
research results currently available in the literature into a macro-scale model with predictive
capability.

In more detail, the program will develop a set of hierarchically structured models at different
length scales, from atomic to macroscopic, at each level taking as parametric input the results of
the model at the next smaller scale. In this way the known microscopic properties can be
transported by systematic procedures to the unknown macro-scale region. It may not be possible
to eliminate empiricism completely, because some of the quantities involved cannot yet be
estimated to the required degree of precision. In this case the aim will be at least to eliminate
functional empiricism. Restriction of empiricism to the choice of parameters to be input to known
functional forms permits some confidence in extrapolation procedures and has the advantage that
the models can readily be updated as better estimates of the parameters become available.

II. Program Organization

The program has been organized into specific tasks and subtasks as follows.

Task 100. Lifetimes of metallic dispersed-phase composites

Most service materials fall into the category of dispersion-hardened metallic composites. This task
will consider the problem of dispersion hardened materials in general, but with two specific
materials, NiAl and MoSi2/SiC in mind.

Task 110. Identification and modelling of micromechanisms

The purpose of this task is to determine what micromechanisms are operative in the high-
temperature deformation of dispersion-hardened materials. In the general case this will be done
by a literature search. For specific materials, the micromechanisms will be determined from the
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experimental program at NRL. Once identified, each of these micromechanisms will be modelled,
in order to determine what are the critical parameters which determine its effect on plastic flow
and values for these parameters. Also to be determined is whether the modelled critical values
are dependent on quantities which must be obtained from a smaller scale model.

Task 111. Equiaxed dispersoids

This task will consider dispersions of the type encountered in NiAl-like materials. That is, the
dispersoids are considered to be small compared to the grain size. The term 'equiaxed' is used
because the particles are roughly of the same size in all three dimensions. However, this is not a
requirement for this task. Rather, it is necessary that the particles not be too large in the dimension
normal to the slip plane, so that they can be surmounted with relative ease by cross-slip and/or
climb without the generation of appreciable back-stress.

Task 112. Anisotropic dispersoids

This task covers the case of dispersoids which are elongated in the direction normal to the slip
plane. An example is SiC fibers in MoSi2. In this case, plastic flow around the dispersoids takes
place by a combination of glide and climb, but is a protracted process during which large stresses
acting in opposition to the applied load are developed.

Task 113. Grain boundary effects

This task will examine the role of grain boundary processes in high-temperature deformation.

Task 120. Macroscopic stochastic model for creep

In real materials it is likely that more than one mechanism will be operative, either in parallel or
in series. The information gained in task 110 is not sufficient to describe this situation. Once the
critical parameters for individual mechanisms have been determined, it is necessary to combine
them in a macroscale stochastic model. This will be done by determining critical stresses and
activation enthalpies as a function of local geometry and using these values in a finite-temperature
simulation of creep through a random array of dispersoids. Careful attention must be paid to
possible interactions between mechanisms.

Task 130. Extension to cyclic deformation

The fitu st, 1n task 100 is to extend the results to the case of cyclic deformation. Irreversibility
is an intrinsic feature of the model in task 120. However, it is likely that other, as yet
unrecognized, characteristics of cycled deformation will have to be considered.
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Task 200. Lifetimes of piezoelectric ferroelectrics

Failure in cyclic loading of sensors and actuators formed from lead zirconate titanate (PZM) is a
continuing problem. PZT is a ceramic and therefore differs from the materials considered in task
100 in that plastic deformation is not involved. This task will examine, modelling as necessary,
the operation of PZT devices, in order to determine the factors governing lifetime limitation.

Task 300. Reporting

Running concurrently with tasks 100 and 200, this task will inform the Navy Program Manager
and Contracting Officer of the technical and fiscal status of the program through R&D status
reports.
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IH. Technical Progress

Task 100. Lifetimes of metallic dispersed-phase composites
Task 110. Identification and modelling of micromechanisms

One publication of relevance to the present program is appended to this report.

"On the Theory of Normal Grain Growth" by Louat and Duesbery, contains some new thoughts
on the problem of grain growth.

Task 200. Lifetimes of piezoelectric ferroelectrics

Th,- utility of PZT as a 'smart material' is severely limited by its premature mechanical failure
when subjected to cyclic loading. The cause of this failure forms the critical question. The central
problem is that an irreversible mechanism is necessary to explain the experimental observations,
while the overt physical properties - that is, piezoelectricity, ferroelectricity and ferroelasticity -
are all symmetric to reversal. A theory will be presented which introduces an intrinsic
irreversibility and, at the same time, explains all salient experimental observations. Critical
experiments and modelling directions will be detailed.

The key experimental observations are as follows.

*In the poled state, ferroelectric domains are elongated strongly in the direction of the poling field
and are separated by walls with little curvature.

*Under cyclic mechanical loading at 70% of the monotonic fracture stress, the lifetime is in excess
of 16' cycles. At stress amplitudes from 75 % to 95 % of the fracture stress, the lifetime decreases
sharply from 10 to 102 cycles) 6. The effect of temperature is unknown.

*Under cyclic (resonant) electrical loading, the lifetime depends on temperature. For deformation
above 80r C, failure is much more rapid than below this critical temperature. Predeformation
below 800 C prior to high-temperature deformation leads to even more rapid failure. Damage is
not detectable for deformation below 80r C, but is observed as intergranular cracking at higher
temperatures.
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a. Theory

a. I Fracture at Grain Boundaries

Work in previous reports has shown that when the c/a ratio is high, it is energetically favorable
for the misfit to be concentrated into dislocations rather than distributed as coherent elastic strain.
The formation of dislocations requires that they be drawn in from grain boundaries, and there
remain the questions of whether this is mechanically possible and whether the resul;tung stresses
can lead to micro-cracking at the boundary.

Many, if not all, domain walls terminate at grain boundaries. Among those that do, some are in
a state of tension directed in a direction which is more or less normal to the boundary. The
magnitude of the stresses are readily calculated on the basis that the transformation strain is
accommodated coherently at domain walls. These strains may be represented as a uniform
continuum of elementary dislocations. For a pair of domain walls specified as passing through the
points x = ± a and as terminating at y = 0 and y = L the normal stress at a point x,O is given
by

L

P q ft (a-x)(3y 2+(a-x)2) (a+x)(3y2+(aex)
2 1tI-v) 0  ((a-x)2+y1)2  Ja+X)2+y dy

(1)

(l-v)

This stress is expressed in terms of the shear modulus rather than of Youngs modulus, because the
configuration considered is one of plane strain. Since oa3 is technically large, of the order of a
few percent of the shear modulus, local fracture of the grain boundary is then a possibility. A
prerequisite for such fracture is the presence of embryonic cracks. These may occur by chance but
their certain presence cannot be assumed. Rather, we note that the shear stresses which are
developed at the ends of a domain in tension are of such a nature as to allow the possibility of the
spontaneous generation of a lattice dislocation dipole with separation equal to the width of the
domain. It will be shown that this configuration can act as a crack nucleus. To achieve this change
in configuration it is necessary that elements of displacement on each wall, which are initially
spread uniformly, glide so as to accumulate as a single dislocation. It may be seen that this
process would result in the appearance of a dislocation dipole pair, with separation equal to the
width of the domain.

A first task in the quantification of this process is the determination of the conditions necessary
for it to occur. In general, a mechanism can be ongoing only if it satisfies conditions relating to
both kinematics and energetics. Here, satisfaction of kinematics is embodied in the assumption that
elementary dislocations can glide along the domain wall. To satisfy requirements on energy we
have only to show that it decreases monotonically during this process.
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To do so it is necessary to perform two integrals. The first gives the increase in energy resulting
from the agglomeration of elementary dislocation; the other represents the decrease in energy
which arises from the action of shear stresses in enforcing this motion. The result of the first
calculation is well known; the increase in energy is simply:

pb 21n-S
r (2)

4x(l-v)

Here, # is the shear modulus, v is Poissons ratio, b is the resultant Burgers vector, S the distance
over which the strain has been agglomerated and r the dislocation core radius. Clearly, b = Sq,
where vn is the misfit parameter. Since there one dislocation is involved on each domain wall, (2)
represents one half of the total energy involved.

Next consider the work done by the shear stresses. The stresses are readily evaluated by again
representing the elastic misfit across a domain wall as a dislocation continuum so that the shear
stress at a point with coordinates x,y, referred and due to an element of dislocation of amount
116x is:

Sbx6x(x2 -y 2 ) (3)
(x2+y 2)2

Using this stress, together with that due to a similar element from the other wall, one finds by
integration that the shear stress at a point with coordinates (O,y) referred to an end of a domain
wall is (when, as is to be expected here, y/L < < 1)

il hn(2-)r (4)
2x(l-v)

From this it is found, again by integration, that the work done in formation of a dipole, of width

2a, is

jib 2n(2a)r (5)
2x(1-v)

The process will be ongoing provided

2a 2 S W b. (6)
'1
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It remains to examine the response of the grain boundary lying between the elements of the dipole
to the combined stresses present. To do so we calculate the force which acts to cause the juncture
of a pair of symmetrically disposed cracks which terminate at the positions of the dipole elements.
Specifically, taking x=0 to represent the mid-point of the length, 2a, of boundary in question, we
suppose the cracks to lie in the ranges: -a < x < -c; c • x < a. Further, we suppose that a
dislocation dipole-pair of appropriate sense having Burgers vectors of magnitude b lie at the points
x±a.

To evaluate the crack extension force it is necessary to determine the dislocation distribution
function, f(x) and then use the result given by Bilby and Eshelby for the crack extension force,
G, which operates at the points x = c. That is

G = Lim (x-.c) x2A;L(x-c)Y2 (x)] (7)
2

where X represents the magnitude of a unit dislocation and

A = A'(8)
27(I-v)

The distribution f(x) is given by

Ax) = I f Va2 _-t2)(t 2-_ 2) a(t)dt

x) 2A(1-v)v(a 2 -x 2 )(x2 -c 2 )D (t-x) (9)

+ -Qr•ai-x')(x2ý-C')

Integration in (9) is over the whole range, D, where dislocation occurs. a(t) = p,/(l-v) and Q is
such that the total amount of dislocation in the individual regions is b and -b. Performing the
necessary integral

ab

wK 
(i

where K (k) is a complete elliptic integral of the first kind. Integrating again



8

AX)- (. 1 n .(a2+c2 -2x)+- b X" 1(1xzA(l--v? K(k)l /(a 2 -X_)(x 2_C) (2)

Substituting in (7)

G a i [211 2)(a 2c2)2 a 2b2  2q(a2-c 2)a b (13)
4(l-v)c(a 2-c 2) (1-v)3  2K(k? K(kXl- v)

For fracture this force must exceed the resistance due to the implied production of new surface.
This is of amount 2yb, where yb is the grain boundary surface energy density. This energy density
is thought to be about one half of that of a free surface in the same material. Following Stroh this
then about j/b/28.

From the form of (13) it is apparent that G passes through a minimum at some value of c lying
between 0 and a. Fracture can only occur if G at this minimum value exceeds a critical value of
about 2 yb. The determination of the position and hence the magnitude of this minimum involves
the solution of a quintic equation. The result will be given in the next report.

b. Plans

* Continued modelling of the mechanisms of ferroelastic domain wall motion will be performed,
with the aim of determining critical parameters which can be derived from or compared with
experiment. Specific questions to be answered are:

1. Is the wall motion governed by the two-dimensional analog of kink pair nucleation and
propagation, or by diffusive dragging of wall defects and dislocations?

2. How are these mechanisms influenced by an electric field of sufficient magnitude to stabilize

the poled state?

3. How do the lifetimes of poled and unpoled specimens compare?

• Domain wall motion in the coherent strain limit will be examined.



On the Theory of Normal Grain Growth

N.P.Louat and M.S.Duesbery

Fairfax Materials Research,

5613 Marble Arch Way,

Alexandria, VA 22310.

Abstract

The theory of normal grain growth that invokes random walk

is further extended by allowing for biases in step direction. It

is concluded that the predictions of this theory are in overall

quantitative accord with experiment. However, a conclusion as to

the degree of agreement between theory and experiment as to the

exact form of the grain size distribution function remains in

doubt because of a lack of precision in the definition and

measurement of grain size. Possibly, this difficulty may be

surmounted by replacing measurements of grain size by those of

the lengths of grain boundary edges as found in planar sections

of polycrystals.

Introduction

The first formulation of a detailed theory of normal grain

growth was that of Hillert [1965]. Hillert [loc.cit] followed von



Neumann E1952] who recognised that the force for growth of an

isolated n sided grain is

P - k(n-6),

where k is a constant. Hillert [loc. cit.] combined this

conclusion with the experimentally observed proportionality

between the size of a grain [Feltham, 1957] and the number of its

sides and with the expectation that

dA.
dt t'

to conclude that the rate of grain growth should be given by

where )1 is the mean grain diameter.

From this juncture the mathematical analysis employed to

derive the grain size distribution function follows that used by

Lifshitz and Slyozov [1961] in dealing with the problem of

Ostwald ripening. In this analysis an infinite dilution of the

growing particles is assumed with the consequence that the

effects of any direct interactions between individuals can be

ignored. In using this approach to deal with normal grain growth

Hillert was therefore supposing that the changes in sizes of

individual grains were independent of the characteristics of

their neighbours. But clearly the motions of neighbouring grains

are in fact close coupled. Thus, for the two dimensional case it

can be seen that the gain, for example, of a side by one grain

can be accomplished only by the loss of a side of an associated

2



neighbouring grain. Similar conclusions hold in the case of three

dimensions. We conclude that the analogy with Ostwald ripening is

too remote to allow an unqualified adoption of the Lifshitz-

Slyozov analysis.

A second approach stems from the work of Feltham [19573.

Feltham concluded that the observed distribution [Feltham, loc.

cit., Beck, 1954] in both the number (n) of sides per grain and

in grain size, was quite well represented by lognormal functions

and sought to deduce the drift velocity from these facts. He was

able to show that this distribution was compatible with a

parabolic rate of growth in grain size, (1). However, this

analysis is not exclusive since it is equally applicable to any

distribution that exhibits self-similarity.

Kurtz and Carpay (1980] noted further, that an approximate

lognormality in size distribution could be ascribed to every

class of grains characterized by a certain fixed number of sides.

They also indicated that the distribution over all classes should

then be expected to be lognormal and attempted to give a

theoretical justification for such characterizations. The basis

of their argument is a result of Kapteyn [1916] which may be

paraphrased as: the motion of a random walker will lead to a

lognormal distribution if its steps are variable and proportional

to the local magnitude of the random variable involved. However,

as can be shown [Louat et al., 1992] such proportionality obtains

in respect to the number of sides to a grain but not to grain

size.

3



The next attempt at an analysis leading to a distribution

function for grain size was that of Louat [19743 who took the

view that the processes of change in grain size are, to a

significant extent, random in sign. His prime justification was

that, the experimentally observed relation:

S- k (n-6)

between grain size and the diameter of sides of grain edges is

only statistically valid. Specifically, the diameters of grains

having n sides obey a frequency distribution approximating to a

lognormal (Feltham, loc.cit.]. A direct consequence is that it is

generally not possible to specify the d ion of growth of a

particular grain of a given size. To illustrate, there is a

significant probability that a grain having a diameter 1.1 times

the mean has say, four sides rather than say, seven. Louat

[loc.cit] thought that this feature should be important in the

mechanism of grain growth. Since it was unclear how Hillert's

approach should be modified to allow for this view, Louat [loc.

cit.] simply ignored Hillert's approach, supposed that the

probabilities that a grain experiences positive and negative

increments in diameter were equal and aimed to judge the validity

of these suppositions by comparing the results of the analysis

based thereon with those from experiment. The grain size

distribution function ,F, deduced on this basis is given by the

appropriate solution to the equation:

4



-F. A-

The factor A is the rate parameter for the thermally activated

process of grain growth. Surprisingly, the accord between theory

and the most detailed experimental data, then available, that of

Hu (1974] was excellent.

The relation predicted was

F(I) - I {exp (-..2 / A 11)} 1 /21- (2)

Pande [1987] has recently attempted to combine directly, the

essentials of the individual approaches of Hillert and Louat. He

added the term involving the second spatial derivative of (1) to

Hillert's [loc.cit.] conservation equation to obtain:

•O (F• _ OF (3)

and found its solution with adjustable weighting for the two

contributions through variation in the ratio of the constants, A0

and B0 . This approach is not easy to justify since it requires the

acceptance of the applicability of the Lifshitz-Slyozov approach.

We shall return to the resolution of this question later. We shall

argue that the natural way to combine the effects involved in

Hillert's and Louat's outlooks is to modify that of Louat so as to

allow the probabilities of grain increase and decrease to be a

function of the grain size. We shall find, that the analysis leads

to an equation which accords in form with that of Pande [loc.

cit.].



We now review the bases and initial development of the theory

of normal grain growth based on the concept of random walk in grain

size space.

Theory of Random Walk in Normal Grain Growth

As originally suggested (Louat, loc.cit). The probabilities of

growth and shrinkage in grain size were assumed be the same. On

this basis the analysis is as follows. For a total population of N

grains, the number which have linear dimensions lying in the range

2 2

is

N F(1) 81.

Any change in this number must result from interchanges with

adjoining populations. We assume that the fluxes are simply

proportional to the population densities from which they originate.

Thus, the net flux into an interval of length 81, at I is

proportional to:

F(I +61) + F(Q -61) - 2 F(1).

It follows from a Taylor expansion of F(1,t) that the time rate of

change of F is:

F (4)

where B is a rate determining constant. This equation is analogous

with the well-known diffusion equation in which the quantity,

S - B812, (5)



becomes, D - v a2 , the diffusion coefficient. Here, a is a constant

which is related to the lattice parameter and v is the frequency

with which a diffusing atom jumps the distance, a. This distance is

clearly a constant. In the case of grain growth the situation is

more complicated and it is necessary to examine the quantity, S in

detail. To this end we consider the behaviour of a particular face

of an arbitrarily chosen grain. In general this face will, under

the action of forces generated from surface energy, be moving

towards an elusive position of equilibrium. Elusive, because this

position changes more or less discontinuously with time as some

grain faces in the neighbourhood change association from one grain

to another and some vanish altogether. The resultant motion of the

specified face will be irregular in both rate and direction.

However, it is to be expected that the amplitude of these movements

and the accompanying changes (8)) in grain size will vary linearly

with the scale of the system; that is with mean grain size, 11.

Compatibly, we conclude that,

81 = a (6)

where a is a numerical constant. Again, as previously stated, and

as is generally accepted, the self-generated pressures, p, which

engender boundary motion scale inversely with mean face diameter,

and so with mean grain size. Thus, the speed of a face varies as,

v =N = yM/L 1

where 4 is the grain boundary mobility and y is a constant.

Consequently the time to effect the change 8) will vary as,

7



Now, the quantity B in (4) is clearly the rate at which jumps of

size 81 are made and so

B - 1/at

and from (6) and (7),

B 8612 - .

This quantity is proportional to the grain boundary energy density.

We now find a suitable solution of (4), which has become

8F •
.I =Y P* (8)

To satisfy the constraint that grains are destroyed but not

created, we adopt the boundary condition 7(X) - o , when I - 0. The

required solution is then found to be:

F( ., t) = C A 3 e- 12/4T

where C is a disposable constant.

This then, is the theory as originally proposed. As stated

above it is unsatisfactory in that the probabilities of growth and

shrinkage are taken t. be the same. We 'ow attempt to rectify this

matter. As originally suggested the processes of normal grain

growth were seen to have a ranz1om component that arises because

grain boundary motion leads to intergranular collisions in which

faces are gained and lost in a somewhat random manner. The



probabilities of the resultant growth and shrinkage in grain size

were assumed to be the same. We shall now examine these

probabilities and find that they vary with grain size. As a first

step in this process we consider the change in configuration

illustrated in fig.l.

Fig. 1. Interchange of grain sides

Here, the merger of the corners X and Y and their replacement

by S and T, is accompanied by the loss of one side by each of the

grains A and B and a similar gain by C and D. The converse is true

if S and T merge. Thus, a grain, A, for example, may either gain or

lose a side through such an event. A crucial question is: to what

extent is the choice between these alternatives determined by the

characteristics of grain A alone? Towards an answer we first refer

to the grain corner illustrated in fig. 2.

9



Figure 2. Geometry at Grain Corners

Here the lines, OX ,OY, Oz represent a trio of grain edges

which meet at a point. We consider first, cases where the number of

sides to the grain considered, A, exceeds six, so that the mean

value of a (see fig.2) is greater than x/6. We see, as shown, that

the point 0 is not at a position of equilibrium and that it will

tend to move in response to forces directed along the directions

,OX, etc. Depending on whether the direction of the resultant (OS)

of these forces lies within or without the right angle YOR, the

grain edge, OY, will respectively shorten or lengthen. Resolving

forces, the condition for changes in OX and OY to have opposite

signs (unpaired changes) is easily shown to be:

cos(*+a) <2 cos 2a. (10)

When n > 6 this condition is satisfied unless * may be regarded as

small. Thus, when n = 7, a = 64.290 we find that, on average,

changes are unpaired unless * < 4,, *, - 3.62°. When changes are

paired both sides lengthen, as von Neumann's result might be

thought to indicate. The most restrictive case occurs when 4 -4..,

the grain is twelve sided and C. - 7.50. For n < 6, we find, for

all n, that the motion is paired and such as to shorten both OX and

0Y.

Consider further, the case of a grain for which n > 6. On

average grains of this class are surrounded by other grains that

have fewer than six sides and so tend to shrink or more

10



specifically, to lose sides. Thus, if in a particular grain, the

average angle between adjoining sides is, 2z(1/2-1/n), then the

external angles at these corners will average:

x(1/2 + 1/n). (11)

It follows from (11) that, on average, the external grains will

have a tendency to lose sides held in common with the internal

grain. Furthermore, since the number of sides to a grain is

necessarily integer, this tendency is concentrated in one or more

particular grains. Thus, we have two countervailing influences on

a side held in common. From the internal grain there is a tendency

to gain sides. From the external grains there is a tendency to lose

sides. The difference between the current value of (11) and that

when n - 6 is a measure of the nett bias. Substitution of

appropriate values for n shows that the biases indicated by (11)

and by the value of t, see (10) are comparable. Thus, we are led to

the view that, for n > 6, the probabilities of gaining and losing

sides, are nearly the same. We conclude, then, that for n in this

range, the processes by which grains gain and lose sides are in the

main random rather than directed.

The situation is different when n < 6 because (10) is

satisfied for all #, when a takes its mean value, which is less

than x/3. Thus, (10) can fail and the grain have a tendency to gain

"a side only at those corners at which stochastic variation provides

"a value of a exceeding x/3. Such excursions can be expected to be

reasonably common when n - 5 and a - 540, but rare, when n 1 4; a

s x/4.

11



We conclude that grains with six or more sides will show

little correlation between their size and rate of growth. On the

other hand, such a correlation should become increasingly apparent

for decreasing, n, in the range: n < 6. These conclusions seem to

be in complete accord with the results of computer simulations

[Srolovitz et al.,1984]. Specifically, it is found that the mean

rate of growth of grains in the range n z 6 is that of the mean

rate of all grains, but that individual grains of this class follow

random growth paths. These involve frequent changes in direction of

growth: sometimes growing sometimes shrinking. In the case of

grains for which n 1 5 the mean growth rate of each number class

is, with decreasing n, progressively smaller than that of the mean.

The acceptance of these results requires a modification of the

analysis leading to (2). We consider the fluxes of grains in and

out of a particular interval of grain size. To represent differing

probabilities of growth and shrinkage we introduce a function, g(l)

such that the flux of grains from size, I to size I + 83 is

proportional to:

f(3) { 1/2 + g(1) -g(1 +81)}.

From a Taylor expansion of f(l,t) we find a relation:

o~f - BbA2(c Mf d afa.d f Mg)
83 .%2 a)3.2 83.%2

where c and d are constants. This equation, is analogous to the

relation representing diffusion in the presence of a potential

gradient, -ag/la. It may be noted that when

12



it accords in its essentials with that of Pande (loc. cit.)and

that, as he has shown, the adoption of this form can result in a

modification of the shape of the distribution function such as to

vary the agreement between theory and experiment.

Experimental data are generally obtained from measurements on

two dimensional sections of three dimensional agglomerates. It is

therefore of interest to investigate the implications of this fact.

We note that the discussion which leads to (1) and (4) is non-

dimensional and in fact is as applicable to grain growth in three

dimensions as it is in two. Accordingly ,the distributions in two

and three dimensions should be the same. Using the simple

approximation that the grains are spherical it is easily shown

(Louat, loc.cit.] that the transformation giving the two

dimensional distribution (f(x)) in terms of that for three (F(l))

is

F(x) = 2p f (1 CrA

where p is the number of grains per unit volume. Substitution for

f(1) from (2) shows that, as required, F and f differ only by a

numerical factor.

The integration of a distribution function over its range a of

applicability gives the total population. On this basis we find

from (9) that

N(t) = c t"'.

13



This result implies, the usually quoted, grain growth rate of, t'1 2"

Other growth laws may be seen to follow if we suppose. that

v-M p

where m - n + 1 a 1, in which case, proceeding as before,

B 812 -q;".

In these circumstances (1) becomes:

1 af_ a2  at (12)

where 11 is the mean grain size:

of the distribution:

F(,)) -Ce-/4 (13)

where

- f: /dt = f(XA)n/2dt.

Thence, we have a grain size time dependence specified by:

S= t1/(2+a).

Thus, for the usually quoted case of boundaries exhibiting

Newtonian viscosity ( n - 0, m - 1), we recover the standard

result. For n - 1 (m - 2), we find the commonly observed, t113

dependence.

It is a non-trivial characteristic of (9) that the

14



distribution of grain sizes is independent of the parameter, n.

Importantly, this prediction has been confirmed by experiment (Hu,

loc. cit.).

We now pass to a consideration of grain shape; specifically to

the distribution of the number of faces , or in two dimensions, of

edges per grain. Clearly the experimental data, which relate to two

dimensions, are represented by a lognormal function. All authors,

including Hu [loc. cit.], who found that his grain size

distribution was not well approximated by a lognormal, appear to

agree on this point. It would appear that the distributions of size

and shape are different. Allowing that there is a difference no

prediction seems to have yet been advanced as to the shape of this

distribution.

Towards such prediction we suppose, consistent with ideas

expressed here and previously [Louat, loc. cit.], that the gain and

loss of grain sides by an individual grain is a random process.

Accordingly, we suppose that the nett change 8N in a time t in a

population of N sides, to be proportional to N (8N/N (( 1). If

then, we choose N such that

N = rn,

that is, if we select a sample consisting of r grains, with each

initially having n sides, we see that the change in the average

number of sides associated with nett change 6N is, for r

necessarily constant:

8n - an,

where a is a constant.

is



Now, distributions developed through random processes in which

the step size, 8x is a function of a random variable x, i.e. 8x -

k(x), have been studied by Kapteyn [1916]. Here, we are concerned

with the case where 8x - x. For this case Kapteyn shows that the

resulting distribution is lognormal:

- (n n/n,)2

S(n) -e 202

(270 1/20 n"

It remains to determine the magnitude of the constants a and

no. We can do so by imposing the topological and experimental

constraints [Smith, 1952] that the average grain must have 6 sides

and that the most common has 5.

To satisfy the first requirement we write

6u ne 20-' dn .;Ne-.

To satisfy the second condition we require that the maximum of the

distribution occurs at n = 5. This gives the relation
n - No"i.

Combining these two equations we find that

a = 0.32

and that

n 5.7.

These then, are the essential bases of the theory. However,

it is to be noted that grains as such, have little physical

significance: They are merely the topologically simplest

description of closed boundary surfaces in polycrystals.
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Furthermore, it is the faces rather than the grains themselves,

which play a direct role in the three dimensional growth process

and it would seem clear that the factors governing the growth of

grain faces should be as well, if not better, described in terms of

the processes of random walk than those relating to grains.

Accordingly the conclusions reached on the these bases in respect

to grain size should also be applicable to grain faces. This

suggests that experiments might involve the measurement of the

sizes of faces, or rather their physically discernible edges

instead of grain diameters. It should be noted that linear

dimensions play a dominant role in the foregoing. For compatibility

experimental measurements of grain size should be made in a linear

fashion.

Comparison of Predictions of Theory with Experiment.

The distribution (9) has been widely criticised (e.g.[Ryum and

Hunderi, 1987) as failing to conserve area and volume. We shall now

see that this criticism is ill-founded.

Previous considerations have proceeded along the following

lines; the total length of a population of N grains is:

L = f.F(%)dx =Al

N = fF(A) dA

while the total area of the same number of grains is:

and the total volume is:

Substitution for f(1) from (7) (F and f are of the same form) shows
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A - fl2F(A)d -NLA&%, (15)

V = (;) CU.

that the length L is independent of time but that A and V are both

time dependent. But it must be appreciated that this is exactly how

these quantities should behave. To appreciate the arguments

involved we can, for simplicity, concentrate on the two dimensional

case. It is apparent that the total number of grains laid end to

end along a line is N when the length of the line is L and that the

total area of these grains is the quantity specified by (18). There

is no constraint that this area should be conserved, rather it is

required that the area of a cross section of a polycrystal remains

invariant during grain growth. Thus, we require that the number of

grains in an area L2 is N2 . Substitution for F(1) from (9) shows,

as required, that the quantity:

N2fA2f(A) dA,

is invariant with time. Similar conclusions are reached in the case

involving three dimensions.

Again, conservation of length is implicit in the stochastic

interchanges envisaged in the considerations leading to (9). Frost

has investigated similar stochastic interchanges under the several

assumptions that area and volume are conserved. He then finds the

distributions:

for two dimensions and in the case of three:

Effectively these distributions differ only by numerical

18



•3

A ( e) = L e (16)

e "I/4Au

va.) =e 5/.(17)A2t/

constants. They ((9), (16) and (17) are each found to conserve

one and only one, of the variables length , area and volume when

subjected to the analysis required for each particular case.

Recent computer simulation studies have concentrated

considerable attention on the question of the form of the

distribution of grain size and in particular on whether it is

better described by some lognormal:

-a(n I/X) 2

g(l) = D e 202 (18)

or by Louat's form (9). Here, D, 1o and a are disposable constants.

It is difficult to resolve this question lacking a precise

definition of the meaning of grain size and because the result

obtained is sensitive to the method of measurement. In two

dimensions the alternative measures are : (a) linear intercepts; (b)

square roots of areas and (c) mean caliper diameter. In three

dimensional simulations the easiest measurement is (d), the cube

root of volume. Anderson et al. [loc. cit. 1989] used methods (a)

and (b) for two dimensions and (d) for three. From these

measurements and experiment (10), the distribution most in accord

with (9) was that found experimentally (Hu, loc. cit.) using method

(c). Of all four, this is also the method which seems to be best
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able to give a good approximation to a linear measure. None of the

methods (a), (b) and (d) can be expected to approximate to a

linear measure . Thus, bearing in mind that the traversing line of

the linear-intercept method is the representation of a line in a

three dimensional agglomeration of grains, it is clear that the

probability of an intersection at a radius, r, from a grain centre

increases linearly with r. It is then easily seen that near-

tangential, and hence short, crossings, of grains by the traversing

line are relatively frequent and that a consequence the use of

linear intercepts will give a distribution that exaggerates the

population of small grains. Again, because grain geometry varies

with size the appropriate roots of area and volume do not represent

linear measures of grain size. However, such invariance is

approached symbatically with increasing grain size. Consistently,

the distributions found in these three ways differ one from the

other at small grains sizes but are nearly coincident with each

other and with LouatIs form (11) at the larger sizes. Specifically,

there is a progressive decrease in relative population density with

decreasing grain size as the quantity measured changed successively

from linear intercept, to area, to volume. Such trends are readily

related to departures from linear measure. For example, for the

case where the measurements are of volume (V) we have :

I = V113 /F 0 (V) E V*/11G(1)

where F0(V) is determined only to the extent that,

O(-=) = 1, Fo'(V) ( o.

The length, V1/ 3 , exceeds that which would be found by a linear
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measure by an amount which is lar'jest at the smallest grain sizes.

Notwithstanding these conclusions one hastens to emphasise

that as previously stated "grain-size" is, at present, an ill-

defined quantity so that the search for perfection of agreement

between theory and experiment is inappropriate now.

A special feature of the transform which invokes spheres is

that it can with ease be employed analytically. In this regard it

has been reported, and seems widely accepted, that both the

lognormal and Louat functions are invariant under its use. As is

shown below this is not true.

For invariance, the function involved must be its own

transform, so we require, for a density of spheres, p, that, (c.f.

A(1)

pfx) fx (
o ) (A2 _X 2 ) 1/2  -T- (19)

This an integral equation of Abelian type and is readily inverted

to give:

f(X) =2ddx (20)a x (x2-;2) 1/2 "

Combining (19) and (20) we have the differential equation:

f X = -2 p d (f (1) / )
= GA

The solution of this equation is necessarily unique and given by

functions conforming tr the form of (2). We conclude that a

lognormal function can be, at most, approximately invariant under

the said transformation and then, only when its defining parameters
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are such that it approximates Louat's form.

CONCLUSIONS:

The various predictions of the theory of normal grain growth based

on the concept of random walk in grain size space are in accord

with experiment and computer simulation. These predictions include:

(1) The shape of the grain size distribution -function; it being

allowed that relatively minor adjustments to the current prediction

are necessary to take account of the expected variation in the

probability of growth and shrinkage steps with grain size. The

effects of non-linearity in measurments and definition of grain

size should be similarly small.

(2) A rate of growth, 10 c t 1/(a+1 , where the factor, m, relates to

the pressure dependence of grain boundary velocity, namely: v - M

P'. The normally quoted, t1/2 behaviour is predicted only for the

normal case of newtonian viscosity in which m = 1.

(3) The independence of the form of the distribution function on m.

(4) The conformity of the distribution function with the

requirement to conserve as required, any one, but not

simultaneously more than one, of the trio: length, area and volume.

(5) The equal applicability of the analysis to two and three

dimensional grain growth.

(6) The associated invariance of the distribution in two and three

dimensions under the customary transform based on the spherical

grain approximation.

(7) The lognormal form of the distribution function for grain size
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shape.

(8) The observations:

(a) that the mean rate of growth of grains with more than five

sides is that of the mean rate of growth of all grains, but in

conformity with the concept of random walk individual grains of

this class follow random paths involving frequent changes in the

directions of growth;

and (b) that in the case of small grains, in general, those with

five or fewer sides, the mean rate of growth is less than that of

the mean of all grains and progressively decreases as the number of

sides decreases.
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Appendix A.

We introduce the opetator notation:

0

and proceed to solve the equation:

Integrating with regard to x i.e. multiplying each term by I, from

the left, we have:
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Bc 8 (c/x) W cac -0 ax -CX ax-"

m(Dt- PDn(-A) -D2)C - 0
x

( Z,D,D- I-D,) C-f M:

where f(t) is an arbitrary function of the time.

Then multiplying by xf from the left we have:

(OXJ D,-PJx-JL--x#D.) C- (OxJ D,,-D, xFj) C

x~f(t).

Integrating for the second time in the variable, x, we have:

JX1
(XxOXix D,-x$) c -X. f( W;. +g(tf)

so that:

(X-X. 04 ,-1 C W gX)"

Thus, as required we have two solutions:

-x f(t)
1z= - x-IX, OX,~ D.;

C x'Pg(t)
1- x'OXI, XI D.

Here, f(t) and g(t) are arbitrary functions.

We then proceed on the basis that the right hand side can be

expanded in infinite series, e.g.:

We require that C - 0 at x - 0 for all t so that the solution,

C2 is not relevant. Again, towards the identification of f(t), we
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C, oxf(r) ÷xpr xPIXt'(t) ....... ..

Sx(fr) + X 3 fl(t) .
-2(3+0) '

note that to accord with the case where 0 - 0, we must take:

f(t) - t-3/2

and then find:

x (1 3 1 x2 + 1 3 5 1 1 (a! ) +
c t3/ "-F T * T 3-T 5+ -I'"+'"5" t

Appendix; B.

Inter-dimensional Transformation.

We suppose that grains in three dimensions are spherical with

their centres dispersed at random and, consistently, that in two

dimensions they appear to be circular. On this basis, we observe

that a plane of section will intersect a sphere if it passes within

a radius distance, d, of its centre. It will make this intersection

in a circle of radius, a g d.

Now, the number of spheres with centres lying in strips

distant between d and d+8d from the plane of section is,

2c8d

per unit area, where c is the number of spheres per unit volume.

Then, let F(r)6r be the fraction of these with radii between r and

r+Br. Such spheres intersect the plane in circles with radii in the

ranges specified by:
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a - {rx- 77T, a+8a - V(rz-d+2z8÷r)

so that,

8a -r 6r/a.

The number of circles, radius between a and a +8a from strips

lying at distances between d and d+8d from the section plane is:

2cd F(r) dr = 2c 8d F(r) a 8a

* G(a) ba
a

and the number of circles of radius between a and a + 8a from all

strips is:

2cf F(r) r dr 8a= G(a) 8a
J0 ,(a3-r2) a

It easily verified b* •abstituting for F(r) from (12) in

(B.1) and writing, r = a cosh e, that the functions G and F differ

only by a numerical constant.

Again, (B.1) is an Abelian integral equation and is easily

inverted to give: r

F(r) =-2 dfG(a)d)

ic d/r7 -=
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